Quantum-limited heat conduction over macroscopic distances

نویسندگان

  • Matti Partanen
  • Kuan Yen Tan
  • Joonas Govenius
  • Russell E. Lake
  • Miika K. Mäkelä
  • Tuomo Tanttu
  • Mikko Möttönen
چکیده

The emerging quantum technological apparatuses1, 2, such as the quantum computer3-6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8-10. However, the short distance between the heat-exchanging bodies in the previous experiments11-14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15-17 which provides a basis for the superconducting quantum computer18-21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Flow in Classical and Quantum Systems and Thermal Rectification

The understanding of the underlying dynamical mechanisms which determine the macroscopic laws of heat conduction is a long standing task of non-equilibrium statistical mechanics. A better understanding of the mechanism of heat conduction may lead to potentially interesting applications based on the possibility to control the heat flow. Indeed, different models of thermal rectifiers has been rec...

متن کامل

Fourier's law of heat conduction: quantum mechanical master equation analysis.

We derive the macroscopic Fourier's Law of heat conduction from the exact gain-loss time convolutionless quantum master equation under three assumptions for the interaction kernel. To second order in the interaction, we show that the first two assumptions are natural results of the long time limit. The third assumption can be satisfied by a family of interactions consisting of an exchange effec...

متن کامل

Macroscale and Microscale Thermal Transport and Thermo-mechanical Interactions: Some Noteworthy Perspectives

Some noteworthy and historical perspectives and overview of macroscale and microscale heat transport behavior in materials and structures are presented. The topic of heat waves is also discussed. The signiicance of constitutive models for both macroscale and microscale heat conduction are described in conjunction with generalizations drawn concerning the physical relevance and the role of relax...

متن کامل

Nonequilibrium Energy Profiles for a Class of 1-D Models

As a paradigm for heat conduction in 1 dimension, we propose a class of models represented by chains of identical cells, each one of which containing an energy storage device called a “tank”. Energy exchange among tanks is mediated by tracer particles, which are injected at characteristic temperatures and rates from heat baths at the two ends of the chain. For stochastic and Hamiltonian models ...

متن کامل

Transient Hydrodynamic and Thermal Behaviors of Fluid Flow in a Vertical Porous Microchannel under the Effect of Hyperbolic Heat Conduction Model

The transient hydrodynamics and thermal behaviors of fluid flow in open-ended vertical parallel-plate porous microchannel are investigated semi-analytically under the effect of the hyperbolic heat conduction model. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the study. The Effects of Knudsen number , Darcy number , and thermal re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016